Severe cold winter in North America linked to bering sea ice loss

16Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

North America experienced an intense cold wave with record low temperatures during the winter of 2017/18, at the time reaching the smallest rank of sea ice area (SIA) in the Bering Sea over the past four decades. Using observations, ocean reanalysis, and atmospheric reanalysis data for 39 winters (1979/80–2017/ 18), both the Bering SIA loss and cold winters in North America are linked robustly via sea level pressure variations over Alaska detected as a dominant mode, the Alaska Oscillation (ALO). The ALO differs from previously identified atmospheric teleconnection and climate patterns. In the positive ALO, the equatorward cold airflow through the Bering Strait increases, resulting in surface air cooling over the Bering Sea and an increase in Bering SIA, as well as surface warming (about 4 K for the winter mean) for North America in response to a decrease of equatorward cold airflow, and vice versa for negative phase. The northerly winds with the cold air over the Bering Sea result in substantial heat release from ocean to atmosphere over open water just south of the region covered by sea ice. Heating over the southern part of Bering Sea acts as a positive feedback for the positive ALO and its related large-scale atmospheric circulation in a linear baroclinic model experiment. Bering SIA shows no decreasing trend, but has remained small since 2015. CMIP6 climate models of the SSP5–8.5 scenario project a decrease of Bering SIA in the future climate. To explain severe cold winters in North America under global warming, it is necessary to get an understanding of climate systems with little or no sea ice.

Cite

CITATION STYLE

APA

Iida, M., Sugimoto, S., & Suga, T. (2020). Severe cold winter in North America linked to bering sea ice loss. Journal of Climate, 33(18), 8069–8085. https://doi.org/10.1175/JCLI-D-19-0994.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free