The formation of all-cis-(multi)fluorinated piperidines by a dearomatization–hydrogenation process

102Citations
Citations of this article
103Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Piperidines and fluorine substituents are both independently indispensable components in pharmaceuticals, agrochemicals and materials. Logically, the incorporation of fluorine atoms into piperidine scaffolds is therefore an area of tremendous potential. However, synthetic approaches towards the formation of these architectures are often impractical. The diastereoselective synthesis of substituted monofluorinated piperidines often requires substrates with pre-defined stereochemistry. That of multifluorinated piperidines is even more challenging, and often needs to be carried out in multistep syntheses. In this report, we describe a straightforward process for the one-pot rhodium-catalysed dearomatization–hydrogenation of fluoropyridine precursors. This strategy enables the formation of a plethora of substituted all-cis-(multi)fluorinated piperidines in a highly diastereoselective fashion through pyridine dearomatization followed by complete saturation of the resulting intermediates by hydrogenation. Fluorinated piperidines with defined axial/equatorial orientation of fluorine substituents were successfully applied in the preparation of commercial drugs analogues. Additionally, fluorinated PipPhos as well as fluorinated ionic liquids were obtained by this dearomatization–hydrogenation process.

Cite

CITATION STYLE

APA

Nairoukh, Z., Wollenburg, M., Schlepphorst, C., Bergander, K., & Glorius, F. (2019). The formation of all-cis-(multi)fluorinated piperidines by a dearomatization–hydrogenation process. Nature Chemistry, 11(3), 264–270. https://doi.org/10.1038/s41557-018-0197-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free