Morphological and Physical Study of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) Flat Membranes Modified by Polyethylene Glycol (PEG)

  • Ilham A
  • Khoiroh N
  • Jovita S
  • et al.
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The aim of this work is to study the effect of polyethylene glycol (PEG) on the modification of microstructure formation correlated with the mechanical strength properties of perovskite-based membrane in form of a flat sheet. LSCF 7328 flat membrane was potentially promoted as an oxygen separator and catalyst for partial oxidation of methane reaction at high temperature. In this study, the phase-inversion followed by sintering process was used as the membrane fabrication method using varied PEG concentration of 0.55, 1.00, and 3.00 wt% with different molecular weight, i.e., PEG 300, 600, 1500, and 4000 Da for each PEG concentration. The result of morphology observation shows that almost every membrane hasthe asymmetric structure with finger-like pores and thin dense layer. Increasing PEG concentration as well as molecular weight increases pore size and affects on porosity, pore's volume, and physical properties of membrane. The largest pore size, pore volume and porosity of the membrane after sintering were found in the addition of 3.00% PEG 4000 (Da) additive with the value of 110.45 μm, 81.34 ml.g-1 and 120.6%, respectively. In addition, the mechanical properties of membrane were tested using the Vickers micro hardness method with the greatest value found in the addition of 3.00% PEG 1500 (Da) additive with the value of 13.58 Hv and the lowest is 3.00% PEG 4000 (Da) with the value of 1.2 Hv.

Cite

CITATION STYLE

APA

Ilham, A. M., Khoiroh, N., Jovita, S., Iqbal, R. M., Harmelia, L., Nurherdiana, S. D., … Fansuri, H. (2018). Morphological and Physical Study of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) Flat Membranes Modified by Polyethylene Glycol (PEG). Journal of Applied Membrane Science & Technology, 22(2). https://doi.org/10.11113/amst.v22n2.131

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free