Tourist trip design problems (TTDP) merupakan permasalahan yang berkaitan dengan bidang pariwisata. TTDP berkaitan dengan perencanaan pengguna dalam melakukan perjalanan wisata berdasarkan pada tempat wisata yang menarik. Dalam sistem rekomendasi, TTDP merupakan permasalahan yang menarik. Hal ini karena tidak hanya digunakan untuk menemukan tempat wisata yang sesuai dengan pengguna, tetapi juga untuk menggabungkan tempat wisata ke dalam rute perjalanan yang praktis dengan mempertimbangkan batasan. Pada artikel ini bertujuan menyajikan penelitian sebelumnya yang berkaitan dengan proses optimasi rekomendasi perjalanan dan bagaimana permasalahan tersebut dimodelkan menggunakan pendekatan yang berbeda untuk mencari solusi yang optimal. Selain itu peluang penelitian yang dapat dilakukan untuk meningkatkan performa rekomendasi. Berdasarkan synthetic literatur review (SLR) dalam penelitian ini, didapatkan peluang penelitian yang dapat dilakukan untuk mendapatkan rekomendasi rute perjalanan yang optimal seperti kombinasi algoritma metaheuristic atau algoritma bio-inspired. Selain itu pada personalisasi pengguna terkait tempat wisata, terdapat peluang mengimplementasikan algorime deep learning seperti LTSM, Transformer, Bert sebagai nilai tempat wisata dari sisi pengguna
CITATION STYLE
Ramdani, A. L., Widyantoro, D. H., & Munir, R. (2024). Optimalisasi Rekomendasi Rute Pada Perencanaan Perjalanan Wisata: Studi Pustaka. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 515–525. https://doi.org/10.57152/malcom.v4i2.1213
Mendeley helps you to discover research relevant for your work.