Machine Learning Approach to Predict Quality Parameters for Bacterial Consortium-Treated Hospital Wastewater and Phytotoxicity Assessment on Radish, Cauliflower, Hot Pepper, Rice and Wheat Crops

3Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

Abstract

Raw hospital wastewater is a source of excessive heavy metals and pharmaceutical pol-lutants. In water-stressed countries such as Pakistan, the practice of unsafe reuse by local farmers for crop irrigation is of major concern. In our previous work, we developed a low-cost bacterial consortium wastewater treatment method. Here, in a two-part study, we first aimed to find what physico-chemical parameters were the most important for differentiating consortium-treated and untreated wastewater for its safe reuse. This was achieved using a Kruskal–Wallis test on a suite of physico-chemical measurements to find those parameters which were differentially abundant between consortium-treated and untreated wastewater. The differentially abundant parameters were then input to a Random Forest classifier. The classifier showed that ‘turbidity’ was the most influential parameter for predicting biotreatment. In the second part of our study, we wanted to know if the consortium-treated wastewater was safe for crop irrigation. We therefore carried out a plant growth experiment using a range of popular crop plants in Pakistan (Radish, Cauliflower, Hot pepper, Rice and Wheat), which were grown using irrigation from consortium-treated and untreated hospital wastewater at a range of dilutions (turbidity levels) and performed a phytotoxicity assessment. Our results showed an increasing trend in germination indices and a decreasing one in phytotoxicity indices in plants after irrigation with consortium-treated hospital wastewater (at each dilution/turbidity measure). The comparative study of growth between plants showed the following trend: Cauliflower > Radish > Wheat > Rice > Hot pepper. Cauliflower was the most adaptive plant (PI: −0.28, −0.13, −0.16, −0.06) for the treated hospital wastewater, while hot pepper was susceptible for reuse; hence, we conclude that bacterial consortium-treated hospital wastewater is safe for reuse for the irrigation of cauliflower, radish, wheat and rice. We further conclude that turbidity is the most influential parameter for predicting bio-treatment efficiency prior to water reuse. This method, therefore, could represent a low-cost, low-tech and safe means for farmers to grow crops in water stressed areas.

Cite

CITATION STYLE

APA

Rashid, A., Mirza, S. A., Keating, C., Ijaz, U. Z., Ali, S., & Campos, L. C. (2022). Machine Learning Approach to Predict Quality Parameters for Bacterial Consortium-Treated Hospital Wastewater and Phytotoxicity Assessment on Radish, Cauliflower, Hot Pepper, Rice and Wheat Crops. Water (Switzerland), 14(1). https://doi.org/10.3390/w14010116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free