Integrin activation is a multifaceted phenomenon leading to increased affinity and avidity for matrix ligands. To investigate whether cytokines produced during stromal infiltration of carcinoma cells activate nonfunctional epithelial integrins, a cellular system of human thyroid clones derived from normal glands (HTU-5) and papillary carcinomas (HTU-34) was employed. In HTU-5 cells, αvβ3 integrin was diffused all over the membrane, disconnected from the cytoskeleton, and unable to mediate adhesion. Conversely, in HTU-34 cells, αvβ3 was clustered at focal contacts (FCs) and mediated firm attachment and spreading. αvβ3 recruitment at FCs and ligand- binding activity, essentially identical to those of HTU-34, occurred in HTU- 5 cells upon treatment with hepatocyte growth factor/scatter factor (HGF/SF). The HTU-34 clone secreted HGF/SF and its receptor was constitutively tyrosine phosphorylated suggesting an autocrine loop responsible for αvβ3 activated state. Antibody-mediated inhibition of HGF/SF function in HTU-34 cells disrupted αvβ3 enrichment at FCs and impaired adhesion. Accordingly, activation of αvβ3 in normal cells was produced by HTU-34 conditioned medium on the basis of its content of HGF/SF. These results provide the first example of a growth factor-driven integrin activation mechanism in normal epithelial cells and uncover the importance of cytokine-based autocrine loops for the physiological control of integrin activation.
CITATION STYLE
Trusolino, L., Serini, G., Cecchini, G., Besati, C., Ambesi-Impiombato, F. S., Marchisio, P. C., & De Filippi, R. (1998). Growth factor-dependent activation of αvβ3 integrin in normal epithelial cells: Implications for tumor invasion. Journal of Cell Biology, 142(4), 1145–1156. https://doi.org/10.1083/jcb.142.4.1145
Mendeley helps you to discover research relevant for your work.