The evolution of vertical and horizontal thermals is examined via three-dimensional numerical simulations. The two types of thermals are distinguished by the geometry of their sources: respectively spherical and horizontal cylindrical. How the evolution of a vertical thermal is affected by varying the Reynolds number from the laminar regime into the fully turbulent regime is examined. Although the rate of rise of a thermal increases with increasing Reynolds number in the laminar regime, it is shown here that it decreases with increasing Reynolds number in the turbulent regime. Known instabilities of vortex rings and vortex dipoles are shown to affect the evolution of the vertical and horizontal thermals, respectively. In particular, the short-wave cooperative instability, commonly seen in the evolution of contrails behind aircraft, is a major influence on the evolution of the horizontal thermal. The vortex dynamics during the encounter of both types of thermals with a strong thermocline is examined. It is found that, when blocked by a thermocline, the head of the vertical thermal is dispersed laterally by the action of small compact vortex dipoles that are produced during the collision. Evidence is presented for the propagation of circular waves in the thermocline that spread out horizontally moving away from the impact site. In the case of the horizontal thermal, the collision with the thermocline results in vortex dynamics similar to that which occurs when a dipole impinges on a no-slip wall.
CITATION STYLE
Orlandi, P., & Carnevale, G. F. (2020). Numerical simulations of thermals with and without stratification. Journal of Fluid Mechanics, 899. https://doi.org/10.1017/jfm.2020.475
Mendeley helps you to discover research relevant for your work.