Ligands that recognise specific i-motif DNAs are helpful in cancer diagnostics and therapeutics, as i-motif formation can cause cancer. Although the loop regions of i-motifs are promising targets for ligands, the interaction between a ligand and the loop regions based on sequence information remains unexplored. Herein, we investigated the loop regions of various i-motif DNAs to determine whether these regions specifically interact with fluorescent ligands. Crystal violet (CV), a triphenylmethane dye, exhibited strong fluorescence with the i-motif derived from the promoter region of the human BCL2 gene in a sequence- and structure-specific manner. Our systematic sequence analysis indicated that CV was bound to the site formed by the first and third loops through inter-loop interactions between the guanine bases present in these loops. As the structural stability of the BCL2 i-motif was unaffected by CV, the local stabilisation of the loops by CV could inhibit the interaction of transcription factors with these loops, repressing the BCL2 expression of MCF-7 cells. Our finding suggests that the loops of the i-motif can act as a novel platform for the specific binding of small molecules; thus, they could be utilised for the theranostics of diseases associated with i-motif DNAs.
CITATION STYLE
Das, S., Takahashi, S., Ohyama, T., Bhowmik, S., & Sugimoto, N. (2023). Theranostic approach to specifically targeting the interloop region of BCL2 i-motif DNA by crystal violet. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-39407-9
Mendeley helps you to discover research relevant for your work.