SCADA applications for electric power system

12Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Main objective of this chapter is to present the Supervisory Control and Data Acquisition (SCADA) technology applied in the energy sector which requires distributed control and monitoring at different levels. If the process is distributed, then the advantages of SCADA system will be seen through low costs related to movements of the equipment to improve the performance tracking. Processes that need to be monitored on a large area, and request frequent and immediate interventions, can be solved more efficiently through a SCADA system. For this, the connection between the master station and remote units must be done via a communication system which can use different communication technologies such as cable, radio, mobile phones, and even satellites. The optimum data transfer may be obtained by using a specific communication protocol. It is worth to mention that such SCADA-based communications are developed using the optical fiber communications technology via the Internet. The information flow between remote and central SCADA units could be designed to be bidirectional for high performance and reliability of the distributed control system, but note that both digital and analog signals are involved in such systems. Besides, an important issue is the information security related to such systems. It is known that the automation and real-time control are used via the Internet and wireless technology, but these technologies have also brought some security problems, having a strong impact both in the business and to the users. The SCADA applications analyzed in this chapter is focused on Electrical Power Systems (EPS). The stepwise step design is shown using the programming environment named VIJEO CITECT SURVEILLANCE SOFTWARES —version 7.40®. The main objective is to show how can be optimized the real-time control to obtain affordable solutions for the EPS based on Renewable Energy Sources (RESs). The both current and optimized solutions are presented, and the role of the reactive power is highlighted in the comparative solutions shown, which are implemented in practice as well. This was achieved by optimizing the SCADA solution of the operation, transmission and overseeing the execution of programs for the operation of power plant trough: (1) the description of the existing solution; (2) the description of the proposed solution with redundant SCADA servers; (3) the disadvantages of the proposed solution with Remote Terminal Unit 32 (RTU32). The optimization of the applications has been carried out because the graphical interface is poor, as long as the only information displayed is from the distribution stations, the states of the switches in medium-voltage lines and of the equipment in the stations. Therefore the dispatcher has not displayed the graphical information about the status of the line equipment, and does not have a quick overview to state of the medium-voltage line as well. Thus, the dispatcher must consult the printed diagrams, which means time consumed and such complicated maneuvers will occupy the most time their activity during a day. Thus, here it will be shown the steps to optimize the graphical interface in order to quickly see the status of the EPS. Furthermore, by improving the graphic interface, the efficiency in carrying out the appropriate maneuvers will increase, as well as the degree of safety. The applications have been designed with high flexibility and can be used either for small applications, either for large size systems. Also, the graphic interface was designed to display online the page’s status and the trends in state variables.

Cite

CITATION STYLE

APA

Enescu, F. M., & Bizon, N. (2017). SCADA applications for electric power system. In Power Systems (pp. 561–609). Springer Verlag. https://doi.org/10.1007/978-3-319-51118-4_15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free