Isocitrate dehydrogenase (IDH) gene mutations are important predictive molecular markers to guide surgical strategy in brain cancer therapy. Herein, we presented a method using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for absolute quantification of 2-hydroxyglutarate (2-HG) on tissues to identify IDH mutations and evaluate tumor residue. This analytical method was tested among 34 glioma patients and validated with gold standard clinical technologies. The cut-off value of 2-HG was set as 0.81 pmol/μg to identify IDH mutant (IDHmt) gliomas with 100% specificity and sensitivity. In addition, 2-HG levels and tumor cell density (TCD) showed positive correlation in IDHmt gliomas by this spatial method. This MALDI MSI-based absolute quantification method has great potentiality for incorporating into surgical workflow in the future.
CITATION STYLE
Lan, C., Li, H., Wang, L., Zhang, J., Wang, X., Zhang, R., … Ma, X. (2021). Absolute quantification of 2-hydroxyglutarate on tissue by matrix-assisted laser desorption/ionization mass spectrometry imaging for rapid and precise identification of isocitrate dehydrogenase mutations in human glioma. International Journal of Cancer, 149(12), 2091–2098. https://doi.org/10.1002/ijc.33729
Mendeley helps you to discover research relevant for your work.