Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The substrates O2 and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin. Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O2 and NO movements and conserved amino acids at the E11, G8, E2, E7, B10, and F7 positions within the globin domain control activation. In the cooperative and allosteric mechanism, O2 migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/ IleE15 pair and LeuE11. NO permeates this tunnel and leverages upon the gating side chains triggering the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7, and water. This allows FADH2 to reduce the ferric iron, which forms the stable ferric–superoxide–TyrB10/GlnE7 complex. This complex reacts with internalized NO with a bimolecular rate constant of 1010 M−1 s−1 forming nitrate, which migrates to the CD loop and unfurls the spring-like structure. To restart the cycle, LeuE11 toggles back to the ferric iron. Actuating electron transfer with O2 and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme. Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.

Cite

CITATION STYLE

APA

Gardner, A. M., & Gardner, P. R. (2021). Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin. Journal of Biological Chemistry, 296. https://doi.org/10.1074/jbc.RA120.016637

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free