HMRL: Hyper-Meta Learning for Sparse Reward Reinforcement Learning Problem

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In spite of the success of existing meta reinforcement learning methods, they still have difficulty in learning a meta policy effectively for RL problems with sparse reward. In this respect, we develop a novel meta reinforcement learning framework called Hyper-Meta RL(HMRL), for sparse reward RL problems. It is consisted with three modules including the cross-environment meta state embedding module which constructs a common meta state space to adapt to different environments; the meta state based environment-specific meta reward shaping which effectively extends the original sparse reward trajectory by cross-environmental knowledge complementarity and as a consequence the meta policy achieves better generalization and efficiency with the shaped meta reward. Experiments with sparse-reward environments show the superiority of HMRL on both transferability and policy learning efficiency.

Cite

CITATION STYLE

APA

Hua, Y., Wang, X., Jin, B., Li, W., Yan, J., He, X., & Zha, H. (2021). HMRL: Hyper-Meta Learning for Sparse Reward Reinforcement Learning Problem. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 637–645). Association for Computing Machinery. https://doi.org/10.1145/3447548.3467242

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free