The mechanistic target of rapamycin (mTOR) plays a pivotal role in growth and tumor progression and is an attractive target for cancer treatment. ATP-competitive mTOR kinase inhibitors (TORKi) have the potential to overcome limitations of rapamycin derivatives in a wide range of malignancies. Herein, we exploit a conformational restriction approach to explore a novel chemical space for the generation of TORKi. Structure-activity relationship (SAR) studies led to the identification of compound 12b with a ∼450-fold selectivity for mTOR over class I PI3K isoforms. Pharmacokinetic studies in male Sprague Dawley rats highlighted a good exposure after oral dosing and a minimum brain penetration. CYP450 reactive phenotyping pointed out the high metabolic stability of 12b. These results identify the tricyclic pyrimido-pyrrolo-oxazine moiety as a novel scaffold for the development of highly selective mTOR inhibitors for cancer treatment.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Borsari, C., Rageot, D., Dall’Asen, A., Bohnacker, T., Melone, A., Sele, A. M., … Wymann, M. P. (2019). A Conformational Restriction Strategy for the Identification of a Highly Selective Pyrimido-pyrrolo-oxazine mTOR Inhibitor. Journal of Medicinal Chemistry, 62(18), 8609–8630. https://doi.org/10.1021/acs.jmedchem.9b00972