Robustness is defined as a system’s ability to withstand under disturbances. In real-life applications, where problem parameters are often uncertain, incorporating robustness in decision making is important. In this study, we propose a robust decision making (RDM) approach using intuitionistic trapezoidal fuzzy number (ITrFN). Fuzzy linguistic quantifier (FLQ) is used in the proposed approach to compute the uncertain optimism degree of the decision maker. Initially, decision maker expresses his/her opinion using linguistic terms, which are presented numerically using ITrFNs. The aggregated ITrFN for each of the alternatives is evaluated using intuitionistic trapezoidal fuzzy ordered weighted averaging operator (ITrFOWA). Then, we find out the expected value and variance of the aggregated ITrFN for each alternative, which are subsequently used for robust decision making. A collective measure of these two values of each alternative is considered to find an interval of the corresponding alternative, known as optimal interval. Alternative with maximum optimal interval is selected as the robust solution. Applicability of the proposed approach has been demonstrated on a site selection problem of nuclear power plant. Site selection for installing a nuclear power plant has become a crucial problem throughout the world, especially after the Fukushima (2011) and Chernobyl (1986) nuclear disasters.
CITATION STYLE
Das, S., Kar, S., & Pal, T. (2017). Robust decision making using intuitionistic fuzzy numbers. Granular Computing, 2(1), 41–54. https://doi.org/10.1007/s41066-016-0024-3
Mendeley helps you to discover research relevant for your work.