Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers

9Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

III-nitrides based light-emitting diodes and laser diodes (LDs) have shown great success as solid-state lighting sources, but the development of common c-plane (0001) polar GaN emitters is facing limitations due to quantum-confinement Stark effect, efficiency drop, low efficiency at green range, and peak wavelength blue-shift. Efficient semipolar or nonpolar GaN light emitting diodes and LDs have been successfully demonstrated by growing on semipolar or nonpolar free-standing GaN substrates. The small size and high cost of high crystal quality semipolar or nonpolar free-standing GaN substrates, which are sliced from hydride vapor phase epitaxy grown c-plane bulk GaN substrate, have severely limited their commercial development and application. Achieving scalable heteroepitaxial semipolar GaN materials with a very low density of basal-stacking faults (BSFs) on a foreign substrate remains very challenging. The recent breakthrough in the demonstration of continuous-wave (CW) semipolar (20 2 ¯1) LDs at room-temperature on semipolar GaN/sapphire template marks a milestone in exploring high crystal quality heteroepitaxial semipolar GaN materials and low-cost semipolar emitters. Here, we review the key progress through the past years about the development of heteroepitaxial semipolar GaN materials including epitaxial lateral overgrowth, orientation controlling epitaxy, BSFs burying by neighboring Ga-polar (0001) GaN with air voids, facet-engineering orientation control epitaxy, resulting in a low density or free of basal stacking faults. Furthermore, we discuss the heteroepitaxially grown pulsed semipolar (11 2 ¯2) blue LDs and CW semipolar (20 2 ¯1) LDs.

Cite

CITATION STYLE

APA

Li, H., Zhang, H., Song, J., Li, P., Nakamura, S., & Denbaars, S. P. (2020, December 1). Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers. Applied Physics Reviews. American Institute of Physics Inc. https://doi.org/10.1063/5.0024236

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free