We evaluate several integrals involving generating functions of continuous q-Hermite polynomials in two different ways. The resulting identities give new proofs and generalizations of the Rogers-Ramanujan identities. Two quintic transformations are given, one of which immediately proves the Rogers-Ramanujan identities without the Jacobi triple product identity. Similar techniques lead to new transformations for unilateral and bilateral series. The quintic transformations lead to curious identities involving primitive fifth roots of unity which are then extended to primitive pth roots of unity for odd p. © 1999 Academic Press.
CITATION STYLE
Garrett, K., Ismail, M. E. H., & Stanton, D. (1999). Variants of the Rogers-Ramanujan Identities. Advances in Applied Mathematics, 23(3), 274–299. https://doi.org/10.1006/aama.1999.0658
Mendeley helps you to discover research relevant for your work.