Objectives: Physical distancing is a control measure against coronavirus disease 2019 (COVID-19). Lockdowns are a strategy to enforce physical distancing in urban areas, but they are drastic measures. Therefore, we assessed the effectiveness of the lockdown measures taken in the world’s second-most populous country, India, by exploring their relationship with community mobility patterns and the doubling time of COVID-19. Methods: We conducted a retrospective analysis based on community mobility patterns, the stringency index of lockdown measures, and the doubling time of COVID-19 cases in India between February 15 and April 26, 2020. Pearson correlation coefficients were calculated between the stringency index, community mobility patterns, and the doubling time of COVID-19 cases. Multiple linear regression was applied to predict the doubling time of COVID-19. Results: Community mobility drastically fell after the lockdown was instituted. The doubling time of COVID-19 cases was negatively correlated with population mobility patterns in outdoor areas (r = –0.45 to –0.58). The stringency index and outdoor mobility patterns were also negatively correlated (r = –0.89 to –0.95). Population mobility patterns (R2 = 0.67) were found to predict the doubling time of COVID-19, and the model’s predictive power increased when the stringency index was also added (R2 = 0.73). Conclusions: Lockdown measures could effectively ensure physical distancing and reduce short-term case spikes in India. Therefore, lockdown measures may be considered for tailored implementation on an intermittent basis, whenever COVID-19 cases are predicted to exceed the health care system’s capacity to manage.
CITATION STYLE
Periyasamy, A. G., & Venkatesh, U. (2021). Population mobility, lockdowns, and covid-19 control: An analysis based on google location data and doubling time from india. Healthcare Informatics Research, 27(4), 325–334. https://doi.org/10.4258/HIR.2021.27.4.325
Mendeley helps you to discover research relevant for your work.