The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood- brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (~20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p<0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p<0.01). These CBF responses were almost abolished (-70%, p<0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl- 2-bromobenzylamine hydrochloride] and were significantly reduced by α- and β-adrenoceptor antagonists (-40%, p<0.001 and -30%, p<0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABAA receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p< 0.001 or -47%, p<0.05). Moreover, inhibition of astroglial metabolism (-35%, p<0.01), vasoactive epoxyeicosatrienoic acids (EETs;-60%, p<0.001) synthesis, large-conductance, calcium-operated (BK,-52%, p<0.05), and inward-rectifier (Kir,-40%, p<0.05) K+channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+fluxes and EET signaling mediate a large part of the hemodynamic response. © 2013 the authors.
CITATION STYLE
Toussay, X., Basu, K., Lacoste, B., & Hamel, E. (2013). Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. Journal of Neuroscience, 33(8), 3390–3401. https://doi.org/10.1523/JNEUROSCI.3346-12.2013
Mendeley helps you to discover research relevant for your work.