This book unifies all aspects of flight dynamics for the efficient development of aerospace vehicle simulations. It provides the reader with a complete set of tools to build, program, and execute simulations. Unlike other books, it uses tensors for modeling flight dynamics in a form invariant under coordinate transformations. For implementation, the tensors are converted to matrices, resulting in compact computer code. The reader can pick templates of missiles, aircraft, or hypersonic vehicles to jump-start a particular application. It is the only textbook that combines the theory of modeling with hands-on examples of three-, five-, and six-degree-of-freedom simulations. Included is a link to the CADAC Web Site where you may apply for the free CADAC CD with eight prototype simulations and plotting programs. Amply illustrated with 318 figures and 44 examples, the text can be used for advanced undergraduate and graduate instruction or for self-study. Also included are 77 problems that enhance the ability to model aerospace vehicles and nine projects that hone the skills for developing three-, five-, and six-degree-of-freedom simulations.
CITATION STYLE
Zipfel, P., & Schiehlen, W. (2001). Modeling and Simulation of Aerospace Vehicle Dynamics. Applied Mechanics Reviews, 54(6), B101–B102. https://doi.org/10.1115/1.1421113
Mendeley helps you to discover research relevant for your work.