Cannabinoid receptor 1 and fatty acid amide hydrolase contribute to operant sensation seeking in mice

4Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

A large body of evidence in humans and preclinical models supports a role for the endocannabinoid system in the proper execution of motivated or goal-directed behaviors. Operant sensation seeking (OSS) is a task that uses varied sensory stimuli as a reinforcer to maintain operant responding in mice. The purpose of the studies in this report was to begin to explore the role of endocannabinoid signaling in OSS utilizing cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) knock out mice. Compared to wild type littermate controls, CB1R knock out mice exhibited significantly fewer active responses and earned significantly fewer reinforcers in fixed ratio and progressive ratio schedules. On the other hand, FAAH knock out mice exhibited increased active responses and earned more reinforcers than wild type littermates in fixed ratio but not progressive ratio schedules. These findings support the role of endocannabinoid signaling in motivated behaviors and also expand our understanding of the signaling processes involved in OSS.

Cite

CITATION STYLE

APA

Helfand, A. I., Olsen, C. M., & Hillard, C. J. (2017). Cannabinoid receptor 1 and fatty acid amide hydrolase contribute to operant sensation seeking in mice. International Journal of Molecular Sciences, 18(8). https://doi.org/10.3390/ijms18081635

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free