Mitigation of Global Warming Potential for Cleaner Composting

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.
Get full text

Abstract

With the rapidly growing human population, urbanization, and the uplifting living standards in all over the world, huge amount of solid waste was generated. It is expected that the entire amount of word solid waste production would climb from more ~3.5 million to >6 million tons/day from 2010 to 2025, and the rate would continue to increase and reach a peak to over 11 million tons/day about by the year 2100. Thus, how to manage those increasing solid waste generation was becoming a great issue for the sustainable civil infrastructure. Organic waste, which includes food scraps, yard wastes, agricultural wastes, and process residues, took the largest proportion of the overall generated solid waste by 46%. But ~90% of the solid waste is directly disposed into the landfill that can produce a considerable proportion of flue gases (generally the CH4 and N2O gases) due to the anaerobic mineralization of bio-available organic matter. Composting is an eco-friendly alternative “Old & Gold” technology to landfilling for the management of organic waste. Its principal interest lies in its potential to recycle the organic nutrients through compost application. The life cycle measurement has been extensively used as a mean of evaluation for impact assessment, such as overall warming potential, along with different waste management technologies. The typical methods assumed for composting comprise transportation of organic waste, viable machinery, greenhouse gases (GHGs) emissions during the curing phase, as well as the end-product application. There is a divergence in the adopted operational methodology to determine its environmental effect. This chapter deliberates on the variations of life cycle computation of solid waste management that involved different global warming potentials of composting. It is also based on the GHGs mitigation approaches to minimize the global warming impact by aerobic composting. The element of the study is to examine the difference in the inventory investigation for composting, and its fundamental mechanism and the significant inventory for an additional assessment. This study establishes that the GHGs emissions which emit directly during the composting process supply additional global warming prospective rather than further emissions. The bulking agent is used for the mitigation of overall warming potential. The measurement of the composting and its impact on global warming prospective is widely dependent on many defined efficient components. The environmental impact should be examined based on the operational approach and the input feedstock to generate a basis with minimized discrepancies among studies. Consecutive exercise is compulsory to evaluate the everlasting assistance of composting on environment, health, and soil properties to further identify its effect as a cleaner technology. Demonstration of mitigation method of field-research is an essential step toward the acquiescence of organic farming with global GHGs emissions moderation object through composting. Therefore, in this chapter, provides a detailed account of the technological advancement and composting approaches in global prospects for mitigation of GHGs emission, environmental safety, and human health protection.

Cite

CITATION STYLE

APA

Awasthi, M. K., Sarsaiya, S., Wang, Q., Wang, M., Chen, H., Ren, X., … Zhang, Z. (2018). Mitigation of Global Warming Potential for Cleaner Composting. In Energy, Environment, and Sustainability (pp. 271–305). Springer Nature. https://doi.org/10.1007/978-981-10-7434-9_16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free