Assessment of dynamic cerebral autoregulation in near-infrared spectroscopy using short channels: A feasibility study in acute ischemic stroke patients

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Introduction: In acute ischemic stroke, progressive impairment of cerebral autoregulation (CA) is frequent and associated with unfavorable outcomes. Easy assessment of cerebral blood flow and CA in stroke units bedside tools like near-infrared spectroscopy (NIRS) might improve early detection of CA deterioration. This study aimed to assess dynamic CA with multichannel CW-NIRS in acute ischemic stroke (AIS) patients compared to agematched healthy controls. Methods: CA reaction was amplified by changes in head of bed position. Long- and short channels were used to monitor systemic artery pressure- and intracranial oscillations simultaneously. Gain and phase shift in spontaneous low- and very low-frequency oscillations (LFO, VLFO) of blood pressure were assessed. Results: A total of 54 participants, 27 with AIS and 27 age-matched controls were included. Gain was significantly lower in the AIS group in the LFO range (i) when the upper body was steadily elevated to 30. and (ii) after its abrupt elevation to 30°. No other differences were found between groups. Discussion: This study demonstrates the feasibility of NIRS short channels to measure CA in AIS patients in one single instrument. A lower gain in AIS might indicate decreased CA activity in this pilot study, but further studies investigating the role of NIRS short channels in AIS are needed.

Cite

CITATION STYLE

APA

Becker, S., Klein, F., König, K., Mathys, C., Liman, T., & Witt, K. (2022). Assessment of dynamic cerebral autoregulation in near-infrared spectroscopy using short channels: A feasibility study in acute ischemic stroke patients. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.1028864

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free