Ultra-long, single crystal, α-Si3N4 nanowires sheathed with amorphous silicon oxide were synthesised by an improved, simplified solid-liquid-solid (SLS) method at 1150 °C without using flowing gases (N2, CH4, Ar, NH3, etc.). Phases, chemical composition, and structural characterisation using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM/HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that the nanowires had Si3N4 @SiOx core-shell structures. The growth of the nanowires was governed by the solid-liquid-solid (SLS) mechanism. The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectra showed that the optical properties of the α-Si3N4 nanowires can be changed along with the excitation wavelength or the excitation light source. This work can be useful, not only for simplifying the design and synthesis of Si-related nanostructures, but also for developing new generation nanodevices with changeable photoelectronic properties.
CITATION STYLE
Liu, H., Huang, Z., Huang, J., Fang, M., Liu, Y. G., Wu, X., … Zhang, S. (2015). Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties. Scientific Reports, 5. https://doi.org/10.1038/srep17250
Mendeley helps you to discover research relevant for your work.