Search for scalar induced gravitational waves in the international pulsar timing array data release 2 and NANOgrav 12.5 years datasets

25Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We perform a Bayesian search in the latest Pulsar Timing Array (PTA) datasets for a stochastic gravitational wave (GW) background sourced by curvature perturbations at scales 105 Mpc-1 ≲ k ≲ 108 Mpc-1. These re-enter the Hubble horizon at temperatures around and below the QCD crossover phase transition in the early Universe. We include a stochastic background of astrophysical origin in our search and properly account for constraints on the curvature power spectrum from the overproduction of primordial black holes (PBHs). We find that the International PTA Data Release 2 significantly favors the astrophysical model for its reported common-spectrum process, over the curvatureinduced background. On the other hand, the two interpretations fit the NANOgrav 12.5 years dataset equally well. We then set new upper limits on the amplitude of the curvature power spectrum at small scales. These are independent from, and competitive with, indirect astrophysical bounds from the abundance of PBH dark matter. Upcoming PTA data releases will provide the strongest probe of the curvature power spectrum around the QCD epoch.

Cite

CITATION STYLE

APA

Dandoy, V., Domcke, V., & Rompineve, F. (2023). Search for scalar induced gravitational waves in the international pulsar timing array data release 2 and NANOgrav 12.5 years datasets. SciPost Physics Core, 6(3). https://doi.org/10.21468/SciPostPhysCore.6.3.060

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free