Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in loss of its carboxy-terminal end

  • Gibson W
  • Marcy A
  • Comolli J
  • et al.
43Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The 37-kilodalton (kDa) assembly protein of cytomegalovirus (strain Colburn) B capsids is shown to have a 40-kDa precursor. Pulse-chase radiolabeling experiments revealed that conversion of the precursor to the product was slow, requiring over 6 h for completion, and correlated with movement from the cytoplasmic to the nuclear fraction of Nonidet P-40-disrupted cells. Of these two proteins, only the 40-kDa precursor was synthesized in vitro from infected-cell RNA, consistent with its being the primary translation product. Amino acid sequence data obtained from CNBr-treated, high-performance liquid chromatography-purified assembly protein indicated that precursor translation begins at the first of two closely spaced potential initiation sites and that precursor maturation involves the loss of at least 32 amino acids from its carboxy-terminal end. It is also shown by immunological cross-reactivity and peptide similarity that three low-abundance B-capsid proteins (i.e., the 45-kilodalton [45K], 39K, and 38K proteins) are closely related to the assembly protein; the nature of this relatedness is discussed.

Cite

CITATION STYLE

APA

Gibson, W., Marcy, A. I., Comolli, J. C., & Lee, J. (1990). Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in loss of its carboxy-terminal end. Journal of Virology, 64(3), 1241–1249. https://doi.org/10.1128/jvi.64.3.1241-1249.1990

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free