Purpose: Covid-19 pandemic is a unique and extraordinary situation for the globe, which has potentially disrupted almost all aspects of life. In this global crisis, the tourism and hospitality sector has collapsed in almost all parts of the world, and the same is true for India. Therefore, this paper aims to investigate the impact of Covid-19 on the Indian tourism industry. Design/methodology/approach: This study develops an appropriate model to forecast the expected loss of foreign tourist arrivals (FTAs) in India for 10 months. Since the FTAs follow a seasonal trend, seasonal autoregressive integrated moving average (SARIMA) method has been employed to forecast the expected FTAs in India from March 2020 to December 2020. The results of the proposed model are then compared with the ones obtained by Holt-Winter's (H-W) model to check the robustness of the proposed model. Findings: The SARIMA model seeks to manifest the monthly arrival of foreign tourists and also elaborates on the progressing expected loss of foreign tourists arrive for the next three quarters is approximately 2 million, 2.3 million and 3.2 million, respectively. Thus, in the next three quarters, there will be an enormous downfall of FTAs, and there is a need to adopt appropriate measures. The comparison demonstrates that SARIMA is a better model than H-W model. Originality/value: Several studies have been reported on pandemic-affected tourism sectors using different techniques. The earlier pandemic outbreak was controlled and region-specific, but the Covid-19 eruption is a global threat having potential ramifications and strong spreading power. This work is one of the first attempts to study and analyse the impact of Covid-19 on FTAs in India.
CITATION STYLE
Arshad, M. O., Khan, S., Haleem, A., Mansoor, H., Arshad, M. O., & Arshad, M. E. (2023). Understanding the impact of Covid-19 on Indian tourism sector through time series modelling. Journal of Tourism Futures, 9(1), 101–115. https://doi.org/10.1108/JTF-06-2020-0100
Mendeley helps you to discover research relevant for your work.