Photo-realistic visualization for the blast wave of TNT explosion by grid-based rendering

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

After the detonation of a solid high explosive, the material has extremely high pressure keeping the solid density and expands rapidly driving strong shock wave. In order to investigate the blast wave propagation driven by the 32-kg TNT explosion of the underground magazine a three-dimensional simulation is performed with a stable and accurate numerical scheme without a special modeling for the expansion process of detonation product gas. The compressible fluid equations are solved by a fractional step procedure which consists of the advection phase and non-advection phase. The former employs the Rational function CIP scheme in order to preserve monotone signals and the latter is solved by IDO (Interpolated Differential Operator) scheme for achieving the accurate calculation. For this simulation results, photo-realistic visualization is achieved with combination of volume rendering with isosurface rendering on grid computer. © Springer-Verlag Berlin Heidelberg 2008.

Cite

CITATION STYLE

APA

Kato, K., Aoki, T., Saburi, T., & Yoshida, M. (2008). Photo-realistic visualization for the blast wave of TNT explosion by grid-based rendering. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4759 LNCS, pp. 271–278). Springer Verlag. https://doi.org/10.1007/978-3-540-77704-5_25

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free