The Effect of Ginsenoside RB1, Diazoxide, and 5-Hydroxydecanoate on Hypoxia-Reoxygenation Injury of H9C2 Cardiomyocytes

9Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study was aimed to investigate whether ginsenoside Rb1 (GS-Rb1) from the cardioprotective Chinese medicine ginseng can reduce hypoxia-reoxygenation (HR)-induced damage to cardiomyocytes by protecting the mitochondria. Mitochondria-mediated apoptosis plays a key role during myocardial ischemia-reperfusion injury (MIRI). When MIRI occurs, the continuous opening of the mitochondrial permeability transition pore (mPTP) causes mitochondrial damage and ultimately leads to apoptosis. We treated H9c2 cells, derived from rat embryonic cardiomyoblasts, with GS-Rb1, diazoxide, and 5-hydroxydecanoate (5-HD), using HR to simulate MIRI. We found that GS-Rb1 can reduce mPTP by stabilizing the mitochondrial membrane potential (MMP) and by reducing reactive oxygen species (ROS) during HR. This protects the mitochondria by reducing the release of cytochrome c and the expression of cleaved-caspase-3 in the cytoplasm, ultimately reducing apoptosis. During this process, GS-Rb1 and diazoxide showed similar effects. These findings provide some evidence for a protective effect of GS-Rb1 treatment on MIRI.

Cite

CITATION STYLE

APA

Zhang, H., Wang, X., Ma, Y., & Shi, Y. (2019). The Effect of Ginsenoside RB1, Diazoxide, and 5-Hydroxydecanoate on Hypoxia-Reoxygenation Injury of H9C2 Cardiomyocytes. Evidence-Based Complementary and Alternative Medicine, 2019. https://doi.org/10.1155/2019/6046405

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free