The two-dimensional (2D) material graphene is highly promising for Hall sensors due to its potential of having high charge carrier mobility and low carrier concentration at room temperature. Here, we report the scalable batch-fabrication of magnetic Hall sensors on graphene encapsulated in hexagonal boron nitride (h-BN) using commercially available large area CVD grown materials. The all-CVD grown h-BN/graphene/h-BN van der Waals heterostructures were prepared by layer transfer technique and Hall sensors were batch-fabricated with 1D edge metal contacts. The current-related Hall sensitivities up to 97 V/AT are measured at room temperature. The Hall sensors showed robust performance over the wafer scale with stable characteristics over six months in ambient environment. This work opens avenues for further development of growth and fabrication technologies of all-CVD 2D material heterostructures and allows further improvements in Hall sensor performance for practical applications.
CITATION STYLE
Dankert, A., Karpiak, B., & Dash, S. P. (2017). Hall sensors batch-fabricated on all-CVD h-BN/graphene/h-BN heterostructures. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12277-8
Mendeley helps you to discover research relevant for your work.