In studying biological roles of interferon regulatory factor (IRF)-1 tumor suppressor in cervical carcinogenesis, we found that HPV E7 is functionally associated with IRF-1. Binding assays indicate a physical interaction between IRF-1 and HPV E7in vivo and in vitro. The carboxyl-terminal transactivation domain of IRF-1 was required for the interaction. Transient co-expression of E7 significantly inhibits the IRF-1-mediated activation of IFN-β promoter in NIH-3T3 cells. Co-transfection of E7 mutants reveals that the pRb-binding portion of E7 is necessary for the E7-mediated inactivation of IRF-1. It was next determined whether histone deacetylase (HDAC) is involved in the inactivation mechanism as recently suggested, where the carboxyl-terminal zinc finger domain of E7 associates with NURD complex containing HDAC. When trichostatin A, an inhibitor of HDAC, was treated, the repressing activity of E7 was released in a dose-dependent manner. Furthermore, the mutation of zinc finger abrogates such activity without effect on the interaction with IRF-1. These results suggest that HPV E7 interferes with the transactivation function of IRF-1 by recruiting HDAC to the promoter. The immune-promoting role of IRF-1 evokes the idea that our novel finding might be important for the elucidation of the E7-mediated immune evading mechanism that is frequently found in cervical cancer.
CITATION STYLE
Park, J.-S., Kim, E.-J., Kwon, H.-J., Hwang, E.-S., Namkoong, S.-E., & Um, S.-J. (2000). Inactivation of Interferon Regulatory Factor-1 Tumor Suppressor Protein by HPV E7 Oncoprotein. Journal of Biological Chemistry, 275(10), 6764–6769. https://doi.org/10.1074/jbc.275.10.6764
Mendeley helps you to discover research relevant for your work.