Segmentation is an important image processing technique that helps to analyze an image automatically. Applications involving detection or recognition of objects in images often include segmentation process. This paper describes two unsupervised clustering based color image segmentation techniques namely K-means clustering and Fuzzy C-means (FCM) clustering. The advantages and disadvantages of both K-means and Fuzzy C-means algorithm are also presented in this paper. K-means algorithm takes less computation time as compared to Fuzzy C-means algorithm which produces result close to that of K-means. On the other hand in FCM algorithm each pixel of an image can have membership to more than one cluster which is not in case of K-means algorithm, an advantage to FCM method. Color images contain wide variety of information and are more complicated than gray scale images. In image processing, though color image segmentation is a challenging task but provides a path for image analysis in practical application fields. Secondly some novel approaches to FCM algorithm for better image segmentation are also discussed such as SFCM (Spatial FCM) and THFCM (Thresholding FCM). Basic FCM algorithm does not take into consideration the spatial information of the image. SFCM specially focus on spatial details and contribute towards image segmentation results for image analysis. It introduces spatial function into FCM algorithm membership function and then operates with available spatial information. THFCM is another approach that focus on thresholding technique for image segmentation. It main task is to find a discerner cluster that will act as automatic threshold. These two approaches shows how better segmentation results can be obtained.
CITATION STYLE
. M. X. (2013). SURVEY ON CLUSTERING BASED COLOR IMAGE SEGMENTATION AND NOVEL APPROACHES TO FCM ALGORITHM. International Journal of Research in Engineering and Technology, 02(12), 346–349. https://doi.org/10.15623/ijret.2013.0212059
Mendeley helps you to discover research relevant for your work.