Komparasi Deteksi Kecurangan pada Data Klaim Asuransi Pelayanan Kesehatan Menggunakan Metode Support Vector Machine (SVM) dan Extreme Gradient Boosting (XGBoost)

  • Nugraha A
  • Irawan M
N/ACitations
Citations of this article
97Readers
Mendeley users who have this article in their library.

Abstract

Pada era informasi ini banyak proses digitalisasi di berbagai bidang kehidupan maka semakin penting juga informasi yang didapatkan dari kumpulan data yang ada. Dampak dari perkembangan ini adalah semakin mudah terlihat kejanggalan pada data yang biasa terjadi dikarenakan adanya praktek kecurangan atau fraud. Deteksi adanya fraud pada layanan kesehatan penting dilakukan untuk dalam pengambilan keputusan yang diambil penyedia layanan kesehatan. Fraud pada layanan kesehatan itu sendiri merupakan masalah utama yang sering dialami penyedia layanan kesehatan saat ini yang merugikan banyak pihak di dalamnya. Oleh karena itu, penelitian ini membahas bagaimana cara mendeteksi fraud pada pelayanan kesehatan dengan cara machine learning. Machine learning adalah cara peningkatan kemampuan mesin dalam menyelesaikan masalah yang baru. Metode machine learning yang digunakan adalah klasifikasi Support Vector Machine (SVM) dan metode klasifikasi Extreme Gradient Boosting (XGBoost) yang hasilnya dibandingkan untuk melihat model yang lebih baik. Hasil yang didapatkan adalah hasil yang berhasil mendeteksi data fraud pada data pelayanan kesehatan tersebut dengan performa klasifikasi yang baik dalam membantu memberikan referensi pada penyedia layanan dalam mendeteksi fraud . Metode XGBoost menghasilkan performa klasifikasi yang baik dengan menghasilkan nilai Balanced Accuracy dan nilai Recall sebesar 0.9995 dan 0.9994

Cite

CITATION STYLE

APA

Nugraha, A. C., & Irawan, M. I. (2023). Komparasi Deteksi Kecurangan pada Data Klaim Asuransi Pelayanan Kesehatan Menggunakan Metode Support Vector Machine (SVM) dan Extreme Gradient Boosting (XGBoost). Jurnal Sains Dan Seni ITS, 12(1). https://doi.org/10.12962/j23373520.v12i1.107032

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free