The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches

55Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

High-resolution beach morphology data collected along much of the U.S. West Coast are synthesized to evaluate the coastal impacts of the 2009-10 El Nio. Coastal change observations were collected as part of five beach monitoring programs that span between 5 and 13 years in duration. In California, regional wave and water level data show that the environmental forcing during the 2009-10 winter was similar to the last significant El Nio of 1997-98, producing the largest seasonal shoreline retreat and/or most landward shoreline position since monitoring began. In contrast, the 2009-10 El Nio did not produce anomalously high mean winter-wave energy in the Pacific Northwest (Oregon and Washington), although the highest 5% of the winter wave-energy measurements were comparable to 1997-98 and two significant non-El Nio winters. The increase in extreme waves in the 2009-10 winter was coupled with elevated water levels and a more southerly wave approach than the long-term mean, resulting in greater shoreline retreat than during 1997-98, including anomalously high shoreline retreat immediately north of jetties, tidal inlets, and rocky headlands. The morphodynamic response observed throughout the U.S. West Coast during the 2009-10 El Nio is principally linked to the El Nio Modoki phenomena, where the warm sea surface temperature (SST) anomaly is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Nio), featuring a more temporally persistent SST anomaly that results in longer periods of elevated wave energy but lower coastal water levels. © 2011 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Barnard, P. L., Allan, J., Hansen, J. E., Kaminsky, G. M., Ruggiero, P., & Doria, A. (2011). The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches. Geophysical Research Letters, 38(13). https://doi.org/10.1029/2011GL047707

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free