DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8

33Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

DNA methylation plays a critical role in chromatin remodeling and gene expression. DNA methyltransferases (DNMTs) are hypothesized to mediate cellular DNA methylation status and gene expression during mammalian development and in malignant diseases. In this study, we examined the role of DNA methyltransferase 1 (DNMT1) and DNMT3b in cell proliferation and survival of hepatocellular carcinoma (HCC) cells. Gene silencing of both DNMT1 and DNMT3b by targeted siRNA knockdown reduces cell proliferation and sensitizes the cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cell death. The proapoptotic protein caspase-8 demonstrated promoter hypermethylation in HCC cells and was up-regulated by knockdown of DNMT1 and DNMT3b both at mRNA and protein levels. In addition, death receptor TRAIL-R2/DR5 (TRAIL receptor 2/death receptor 5) did not exhibit promoter hypermethylation in HCC cells but was also up-regulated by knockdown of DNMT1 and DNMT3b both at mRNA and protein levels. Consistent with this observation, the combined transfection of DNMT1-siRNA plus DNMT3b-siRNA enhanced formation of the TRAIL-death-inducing signaling complex formation in HCC cells. In conclusion, our data suggest that DNA methylation of specific genomic regions maintained by DNMT1 and DNMT3b plays a critical role in survival of HCC cells, and a simultaneous knockdown of both DNMT1 and DNMT3b may be a novel anticancer strategy for the treatment of HCC. (Cancer Sci 2010). © 2010 Japanese Cancer Association.

Cite

CITATION STYLE

APA

Kurita, S., Higuchi, H., Saito, Y., Nakamoto, N., Takaishi, H., Tada, S., … Hibi, T. (2010). DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Science, 101(6), 1431–1439. https://doi.org/10.1111/j.1349-7006.2010.01565.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free