Response of OH airglow emissions to mesospheric gravity waves and comparisons with full-wave model simulation at a low-latitude Indian station

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Quasi-monochromatic gravity-wave-induced oscillations, monitored using the mesospheric OH airglow emission over Kolhapur (16.8° N, 74.2° E), India, during January to April 2010 and January to December 2011, have been characterized using the Krassovsky method. The nocturnal variability reveals prominent wave signatures with periods ranging from 5.2 to 10.8 h as the dominant nocturnal wave with embedded short-period waves having wave periods of 1.5-4.4 h. The results show that the magnitude of the Krassovsky parameter, viz. η, ranged from 2.1 to 10.2 h for principal or long nocturnal waves (5.2-10.8 h observed periods), and from 1.5 to 5.4 h for the short waves (1.5-4.4 h observed periods) during the years of 2010 and 2011, respectively. The phase (i.e., 8) values of the Krassovsky parameters exhibited larger variability and varied from-8.1 to 167°. The deduced mean vertical wavelengths are found to be approximately-60.220 and-42.835 km for longand short-period waves for the year 2010. Similarly, for 2011 the mean vertical wavelengths are found to be approximately-77.630 and-59.230 km for long and short wave periods, respectively, indicating that the observations over Kolhapur were dominated by upward-propagating waves. We use a full-wave model to simulate the response of OH emission to the wave motion and compare the results with observed values.

Cite

CITATION STYLE

APA

Ghodpage, R. N., Hickey, M. P., Taori, A. K., Siingh, D., & Patil, P. T. (2016). Response of OH airglow emissions to mesospheric gravity waves and comparisons with full-wave model simulation at a low-latitude Indian station. Atmospheric Chemistry and Physics, 16(9), 5611–5621. https://doi.org/10.5194/acp-16-5611-2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free