Secoisolariciresinol diglucoside is the main flax (Linum usitatissimum) lignan that is converted to the mammalian lignans enterodiol (ED) and enterolactone (EL) by gastrointestinal microbiota. The objectives of the present study were to investigate the role of ruminal microbiota and the effects of flax oil on in vivo metabolism of flax lignans and concentration of EL in biological fluids. Four rumen-cannulated dairy cows were used in a 4×4 Latin square design. There were four periods of 21d each and four treatments utilising flax hulls (1800g/d) and oil (400g/d) supplements. The treatments were: (1) oil and hulls administered in the rumen and abomasal infusion of water; (2) oil and hulls administered in the abomasum; (3) oil infused in the abomasum and hulls placed in the rumen; (4) oil placed in the rumen and hulls administered in the abomasum. Samples were collected during the last week of each period and subjected to chemical analysis. The site of supplementation of oil and hulls had no effect on ruminal EL concentration. Supplementing flax oil in the rumen and the abomasum led to similar EL concentrations in urine, plasma and milk. Concentrations of EL were higher in the urine, plasma and milk of cows supplemented with hulls in the rumen than in those placed with hulls in the abomasum. The present study demonstrated that ruminal microbiota play an important role in the metabolism of flax lignans.
CITATION STYLE
Gagnon, N., Côrtes, C., Da Silva, D., Kazama, R., Benchaar, C., Dos Santos, G., … Petit, H. V. (2009). Ruminal metabolism of flaxseed (Linum usitatissimum) lignans to the mammalian lignan enterolactone and its concentration in ruminal fluid, plasma, urine and milk of dairy cows. British Journal of Nutrition, 102(7), 1015–1023. https://doi.org/10.1017/S0007114509344104
Mendeley helps you to discover research relevant for your work.