Medicinal chemistry of σ1 receptor ligands: Pharmacophore models, synthesis, structure affinity relationships, and pharmacological applications

12Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In the first part of this chapter, we summarize the various pharmacophore models for σ1 receptor ligands. Common to all of them is a basic amine flanked by two hydrophobic regions, representing the pharmacophoric elements. The development of computer-based models like the 3D homology model is described as well as the first crystal structure of the σ1 receptor. The second part focuses on the synthesis and biological properties of different σ1 receptor ligands, identified as 1-9. Monocyclic piperazines 1 and bicyclic piperazines 2 and 3 were developed as cytotoxic compounds, thus the IC50 values of cell growth and survival inhibition studies are given for all derivatives. The mechanism of cell survival inhibition, induction of time-dependent apoptosis, of compound ent-2a is discussed. Experimentally determined σ1 affinity shows good correlation with the results from molecular dynamics simulations based on a 3D homology model. Spirocyclic compounds 4 and 5 represent well-established σ1 receptor ligands. The homologous fluoroalkyl derivatives 4 have favorable pharmacological properties for use as fluorinated PET tracers. The (S)-configured fluoroethyl substituted compound (S)-4b is under investigation as PET tracer for imaging of σ1 receptors in the brain of patients affected by major depression. 1,3-Dioxanes 6c and 6d display a very potent σ1 antagonist profile and the racemic 1,3-dioxane 6c has high anti-allodynic activity at low doses. The arylpropenylamines 7 are very potent σ1 receptor ligands with high σ1/σ2 selectivity. The top compound 7g acts as an agonist as defined by its ability to potentiate neurite outgrowth at low concentrations. Among the morpholinoethoxypyrazoles 8, 8c (known as S1RA) reveals the most promising pharmacokinetic and physicochemical properties. Due to its good safety profile, 8c is currently being investigated in a phase II clinical trial for the treatment of neuropathic pain. The most potent ligand 9e of 3,4-dihydro-2(1H)-quinolones 9 shows promising anti-nociceptive activity in the formalin test.

Cite

CITATION STYLE

APA

Weber, F., & Wünsch, B. (2017). Medicinal chemistry of σ1 receptor ligands: Pharmacophore models, synthesis, structure affinity relationships, and pharmacological applications. In Handbook of Experimental Pharmacology (Vol. 244, pp. 51–79). Springer New York LLC. https://doi.org/10.1007/164_2017_33

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free