OBJECTIVES Perioperative myocardial infarction (MI) with ischaemia-reperfusion injury (IRI) is a devastating entity occurring in 1-2% of patients after cardiac surgery. The molecular pathway leading to myocardial cellular destruction after MI may include monoamine oxidases. We experimentally investigated whether moclobemide, a monoamine oxidase inhibitor, enhances myocardial recovery after cardiac arrest and MI. METHODS Fifty-six syngeneic Fischer rats underwent heterotopic cardiac transplantation to induce reversible IRI after cardiac arrest. Twenty-eight rats also underwent permanent ligation of the left anterior descending coronary artery to induce MI after cardiac arrest. Twenty-eight rats with or without MI were treated with subcutaneous moclobemide 10 mg/kg/day. Methods used to study myocardial recovery were microdialysis for intramyocardial metabolism, histology and quantitative reverse-transcription polymerase chain reaction for high-mobility group box-1 (HMGB1), haeme oxygenase-1 (HO-1), interleukin-6, hypoxia-inducible factor 1α and macrophages (CD68). RESULTS Pyruvate increased in MI treated with moclobemide versus IRI with moclobemide (29.19 ± 7.64 vs 13.86 ± 8.49 μM, P = 0.028), reflecting metabolic activity after cardiac arrest and reperfusion. Myocardial inflammation increased in MI compared with IRI after 1 h (0.80 ± 0.56 vs 0, point score units [PSUs], P = 0.003), but decreased after 5 days in MI treated with moclobemide versus MI alone (0.80 ± 0.83 vs 2.00 ± 0.70, PSU, P = 0.033). Expressions of HMGB1, CD68 and HO-1 decreased in MI treated with moclobemide versus MI alone (1.33 ± 0.20 vs 1.75 ± 0.24, fold changes [FCs], P = 0.028; 5.15 ± 1.10 vs 9.59 ± 2.75, FC, P = 0.050; 10.41 ± 4.17 vs 21.28 ± 10.01, FC, P = 0.047), indicating myocardial recovery and increased cellularity of remote intramyocardial arteries. CONCLUSIONS Moclobemide enhances myocardial recovery after cardiac arrest and MI; inhibition of remote myocardial changes may be achieved by targeting treatment against monoamine oxidase.
CITATION STYLE
Vuohelainen, V., Hämäläinen, M., Paavonen, T., Karlsson, S., Moilanen, E., & Mennander, A. (2015). Inhibition of monoamine oxidase A increases recovery after experimental cardiac arrest. In Interactive Cardiovascular and Thoracic Surgery (Vol. 21, pp. 441–449). Oxford University Press. https://doi.org/10.1093/icvts/ivv175
Mendeley helps you to discover research relevant for your work.