This study investigated rice cropping practices and rice growing areas in the Vietnamese Mekong Delta using MODIS 250 × 250 m normalized difference vegetation index (NDVI) data acquired during the 2002 and 2007 rice cropping seasons. Data processing was conducted in five main steps: (1) constructing time-series MODIS NDVI data; (2) noise filtering of the time-series MODIS NDVI data using empirical mode decomposition (EMD); (3) extracting and evaluating phenological rice training patterns from the smooth time profiles of NDVI; (4) classifying rice cropping systems using support vector machines (SVMs); and (5) conducting an error analysis using ground reference data and government rice statistics. The results indicated that EMD was an efficient filter for noise removal in the time-series MODIS NDVI data. The filtered temporal NDVI profile characterized the distinct behaviors of the rice cropping systems. The estimated sowing and harvesting dates were compared with the field-survey data and indicated root mean square error (RMSE) values of 7.5 and 8.2 days, respectively. The comparison results between the 2002 classification map and the ground reference data indicated that the overall accuracy for the 2002 data was 92.9% with a Kappa coefficient of 0.89, while in 2007 these values were 93.8% and 0.90, respectively. At the district level, there was good agreement between the MODIS-based estimated areas and government rice statistics for 2002 and 2007 (R 2 ≥ 0.85). An investigation of changes in cropping practices from 2002 to 2007 showed that 12.9% of the area used for double-cropped irrigated rice in 2002 had been converted to triple-cropped irrigated rice by 2007, whereas 27.4% of the area used for triple-cropped irrigated rice in 2002 had been converted to double-cropped irrigated rice by 2007.
CITATION STYLE
Chen, C. F., Chen, C. R., & Son, N. T. (2012). Investigating rice cropping practices and growing areas from modis data using empirical mode decomposition and support vector machines. GIScience and Remote Sensing, 49(1), 117–138. https://doi.org/10.2747/1548-1603.49.1.117
Mendeley helps you to discover research relevant for your work.