TEMPO/NaBr/NaClO-mediated surface oxidation of NCC, acid-extracted from aspen kraft pulp, was studied, and the properties of nanocellulose whiskers before and after oxidation were characterized by conductimetry, Fourier transform infrared spectroscopy, X-ray diffraction, and atomic force microscopy. The resulting products with varied oxidation degrees were then applied in the deinked pulp to evaluate the improvements of fines retention and pulp drainage. It was found that TEMPO-oxidized NCC maintained its crystalline form of cellulose I, while it showed better dispersibility and smaller dimension due to the high level of carboxyl content and degree of oxidation. By adding NCC and TONCC to the deinked pulp, the retention was improved while the drainage rate was decreased to some extent. When TONCC samples were applied together with cationic polyacrylamide to constitute a microparticulate retention system, both fines retention and pulp drainage were apparently improved. Further study showed that the retention and drainage rate were significantly influenced by the degree of oxidation. TONCC sample with the highest DO (0.134) gave the highest retention and drainage rate, 89.6% and 9.41 mL/s, respectively.
CITATION STYLE
Xu, Q. H., Li, W. G., Cheng, Z. L., Yang, G., & Qin, M. H. (2014). TEMPO/NaBr/NaClO-mediated surface oxidation of nanocrystalline cellulose and its microparticulate retention system with cationic polyacrylamide. BioResources. https://doi.org/10.15376/biores.9.1.994-1006
Mendeley helps you to discover research relevant for your work.