β-catenin and PI3Kδ inhibition expands precursor Th17 cells with heightened stemness and antitumor activity

36Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

ICOS costimulation generates Th17 cells with durable memory responses to tumor. Herein, we found that ICOS induces PI3K/p110δ/Akt and Wnt/β-catenin pathways in Th17 cells. Coinhibiting PI3Kδ and β-catenin altered the biological fate of Th17 cells. Th17 cells inhibited of both pathways expressed less RORγt, which, in turn, reduced their ability to secrete IL-17. Unexpectedly, these cells were more effective (than uninhibited cells) at regressing tumor when infused into mice, leading to long-term curative responses. PI3Kδ inhibition expanded precursor Th17 cells with a central memory phenotype that expressed nominal regulatory properties (low FoxP3), while β-catenin inhibition enhanced Th17 multifunctionality in vivo. Remarkably, upon TCR restimulation, RORγt and IL-17 rebounded in Th17 cells treated with PI3Kδ and β-catenin inhibitors. Moreover, these cells regained β-catenin, Tcf7, and Akt expression, licensing them to secrete heightened IL-2, persist, and eradicate solid tumors without help from endogenous NK and CD8 T cells. This finding shines a light on ways to repurpose FDA-approved drugs to augment T cell–based cancer immunotherapies.

Cite

CITATION STYLE

APA

Majchrzak, K., Nelson, M. H., Bowers, J. S., Bailey, S. R., Wyatt, M. M., Wrangle, J. M., … Paulos, C. M. (2017). β-catenin and PI3Kδ inhibition expands precursor Th17 cells with heightened stemness and antitumor activity. JCI Insight, 2(8). https://doi.org/10.1172/jci.insight.90547

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free