The developmental relationship of myosin binding proteins (myomesin, connectin and C-protein) to myosin was studied in chicken cervical somites by immunofluorescence microscopy. Muscle and non-muscle myosins initially appeared as slender rods at the same sites, and then, fused to form non-striated fibrils. As muscle myosin formed striated structures (A bands), non-muscle myosin disappeared from this structure. Myomesin (reactive with monoclonal antibodies MyB4 and MyBB78) and connectin (carboxy terminal region, reactive with monoclonal antibody T51) were seen as dots in the center of these myosin rods. These proteins then formed characteristic mature striations on non-striated fibrils of myosin. Earlier alignment of these myosin binding proteins rather than myosin indicates that the correct assembly of these proteins seems to be related to the formation of initial myosin rods as well as subsequent linear and periodic alignment of myosin molecules to form early A bands. Connectin spots reactive with 9D10 were scattered around myosin rods/myomesin dots/connectin T51 dots. These spots may represent radiating connectin filaments from these rods/dots to link myosin rods to the I-Z-I structures of myofibrils to be incorporated. Since the slow isoform of C-protein formed its characteristic bands (″doublets″) prior to H zone formation within A bands by myosin, this isoform may help to precisely align myosin filaments within the A band region. The presence of the slow, then the slow and the cardiac, and finally the co-existence of the slow and the fast isoforms of C-protein may interfere with the incorporation and co-polymerization of non-adult isoforms into myofibrils.
CITATION STYLE
Yang, Y. G., Obinata, T., & Shimada, Y. (2000). Developmental relationship of myosin binding proteins (myomesin, connectin and C-protein) to myosin in chicken somites as studied by immunofluorescence microscopy. Cell Structure and Function, 25(3), 177–185. https://doi.org/10.1247/csf.25.177
Mendeley helps you to discover research relevant for your work.