The interactive demand of electrical power between integrated energy microgrid (IEMG) and smart distribution network (SDN) is growing rapidly with the increase of distributed generation (DG) installed capacity. When SDN and IEMG are connected through a single gird-connected point, the renewable power consumption may be limited by tie-line capacity. A distributed optimal dispatching method of the SDN considering the IEMG with multiple gird-connected points is proposed. The impact of various flexible resources is also considered. Firstly, a IEMG connection mode, in which each IEMG can be connected to multiple nodes of the SDN, is designed. A distributed optimal dispatching method is proposed, by which the IEMG operation privacy and the SDN responsibility to consume renewable power can be considered. Then, the electric power on tie-lines is taken as the coupling variable to establish the IEMG and SDN coordinated dispatching model. The model can be solved by adjusting the power upper limits of tie-lines circularly. Finally, the improved IEEE 33-bus system is analysed based on the proposed method. It is found that when the IEMG is with large DG installed capacity, multiple gird-connected points can improve the SDN operation flexibility and increase the operation benefits of all entities.
CITATION STYLE
Sun, B., Jing, R., Zeng, Y., Ge, L., Liang, G., & Dong, S. (2023). Distributed optimal dispatching method of smart distribution network considering integrated energy microgrid with multiple gird-connected points. IET Energy Systems Integration, 5(2), 152–179. https://doi.org/10.1049/esi2.12089
Mendeley helps you to discover research relevant for your work.