New improved calculations are reported for transition probabilities and electron impact excitation collision strengths for the astrophysically important lines in S II. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method with term-dependent non-orthogonal orbitals is employed for an accurate representation of the target wave functions. The close-coupling expansion includes 70 bound levels of S II covering all possible terms of the ground 3s 23p 3 and singly excited 3s3p 4, 3s 23p 23d, 3s 23p 24s, and 3s 23p 24p configurations. The present calculations are more extensive than previous ones, leading to a total 2415 transitions between fine-structure levels. The effective collision strengths are obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities and these are tabulated for all fine-structure transitions at electron temperatures in the range from 5000 to 100,000 K. The present results are compared with a variety of other close-coupling calculations and available experimental data. There is an overall good agreement with the recent 18-state calculations by Ramsbottom, Bell, & Stafford and with the 19-state calculations by Tayal for the most part, but some significant differences are also noted for some transitions. © 2010. The American Astronomical Society. All rights reserved.
CITATION STYLE
Tayal, S. S., & Zatsarinny, O. (2010). Breit-pauli transition probabilities and electron excitation collision strengths for singly ionized sulfur. Astrophysical Journal, Supplement Series, 188(1), 32–45. https://doi.org/10.1088/0067-0049/188/1/32
Mendeley helps you to discover research relevant for your work.