The paper presents a method of conversion of GCODE files designed for additive manufacturing in 3D printers to a format which may be conveniently visualized. In the investigations three different 3D models were created: a) shell model (a casing); b) solid model (a gear); c) model with curvilinear elements (a screw). All these models were converted to GCODE files. Next the reverse engineering was applied and GCODE files were converted to points sets. These points represent particular locations of the print head. In the developed algorithm the linear interpolation was added to obtain intermediate points between locations of the print head for longer sections. The final part shows an attempt of applying Poisson Surface Reconstruction in order to obtain the original geometry. The main motivation to develop a new software resulted from the observation that sometimes the original solid model is no longer available, while there is a need to change some geometry details or settings before production stage.
CITATION STYLE
Sobieski, W., & Kiński, W. (2020). Geometry extraction from GCODE files destined for 3D printers. Technical Sciences, (2019/2020). https://doi.org/10.31648/ts.5644
Mendeley helps you to discover research relevant for your work.