Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine

94Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI50 of 151.5 pM. Cells defective in DNA repair protein ERCC1 or homologous recombination repair showed increased sensitivity to SG3199 and the drug was only moderately susceptible to multidrug resistance mechanisms. SG3199 was highly efficient at producing DNA interstrand cross-links in naked linear plasmid DNA and dose-dependent cross-linking was observed in cells. Cross-links formed rapidly in cells and persisted over 36 hours. Following intravenous (iv) administration to rats SG3199 showed a very rapid clearance with a half life as short as 8 minutes. These combined properties of cytotoxic potency, rapid formation and persistence of DNA interstrand cross-links and very short half-life contribute to the emerging success of SG3199 as a warhead in clinical stage ADCs.

Cite

CITATION STYLE

APA

Hartley, J. A., Flynn, M. J., Bingham, J. P., Corbett, S., Reinert, H., Tiberghien, A., … Howard, P. W. (2018). Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28533-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free