Remotely sensed terrestrial water storage changes (TWSC) from the past Gravity Recovery and Climate Experiment (GRACE) mission cover a relatively short period (≈15 years). This short span presents challenges for long-term studies (e.g., drought assessment) in data-poor regions like West Africa (WA). Thus, we developed a Nonlinear Autoregressive model with eXogenous input (NARX) neural network to backcast GRACE-derived TWSC series to 1979 overWA. We trained the network to simulate TWSC based on its relationship with rainfall, evaporation, surface temperature, net-precipitation, soil moisture, and climate indices. The reconstructed TWSC series, upon validation, indicate high skill performance with a root-mean-square error (RMSE) of 11.83 mm/month and coefficient correlation of 0.89. The validation was performed considering only 15% of the available TWSC data not used to train the network. More so, we used the total water content changes (TWCC) synthesized from Noah driven global land data assimilation system in a simulation under the same condition as the GRACE data. The results based on this simulation show the feasibility of the NARX networks in hindcasting TWCC with RMSE of 8.06 mm/month and correlation coefficient of 0.88. The NARX network proved robust to adequately reconstruct GRACE-derived TWSC estimates back to 1979.
CITATION STYLE
Ferreira, V. G., Andam-Akorful, S. A., Dannouf, R., & Adu-Afari, E. (2019). A multi-sourced data retrodiction of remotely sensed terrestrial water storage changes for West Africa. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020401
Mendeley helps you to discover research relevant for your work.