Hypoxia-inducible Factor 1α (HIF-1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions

  • Salceda S
  • Caro J
N/ACitations
Citations of this article
158Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The hypoxia-inducible factor 1 transcriptional activator complex (HIF-1) is involved in the activation of the erythropoietin and several other hypoxia-responsive genes. The HIF-1 complex is composed of two protein subunits: HIF-1beta/ARNT (aryl hydrocarbon receptor nuclear translocator), which is constitutively expressed, and HIF-1alpha, which is not present in normal cells but induced under hypoxic conditions. The HIF-1alpha subunit is continuously synthesized and degraded under normoxic conditions, while it accumulates rapidly following exposure to low oxygen tensions. The involvement of the ubiquitin-proteasome system in the proteolytic destruction of HIF-1 in normoxia was studied by the use of specific inhibitors of the proteasome system. Lactacystin and MG-132 were found to protect the degradation of the HIF-1 complex in cells transferred from hypoxia to normoxia. The same inhibitors were able to induce HIF-1 complex formation when added to normoxic cells. Final confirmation of the involvement of the ubiquitin-proteasome system in the regulated degradation of HIF-1alpha was obtained by the use of ts20TGR cells, which contain a temperature-sensitive mutant of E1, the ubiquitin-activating enzyme. Exposure of ts20 cells, under normoxic conditions, to the non-permissive temperature induced a rapid and progressive accumulation of HIF-1. The effect of proteasome inhibitors on the normoxic induction of HIF-1 binding activity was mimicked by the thiol reducing agent N-(2-mercaptopropionyl)-glycine and by the oxygen radical scavenger 2-acetamidoacrylic acid. Furthermore, N-(2-mercaptopropionyl)-glycine induced gene expression as measured by the stimulation of a HIF-1-luciferase expression vector and by the induction of erythropoietin mRNA in normoxic Hep 3B cells. These last findings strongly suggest that the hypoxia induced changes in HIF-1alpha stability and subsequent gene activation are mediated by redox-induced changes.

Cite

CITATION STYLE

APA

Salceda, S., & Caro, J. (1997). Hypoxia-inducible Factor 1α (HIF-1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions. Journal of Biological Chemistry, 272(36), 22642–22647. https://doi.org/10.1074/jbc.272.36.22642

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free