Emerging Biomedical Applications of Organic Light-Emitting Diodes

77Citations
Citations of this article
127Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

As solid-state light sources based on amorphous organic semiconductors, organic light-emitting diodes (OLEDs) are widely used in modern smartphone displays and TVs. Due to the dramatic improvements in stability, efficiency, and brightness achieved over the last three decades, OLEDs have also become attractive light sources for compact and “imperceptible” biomedical devices that use light to probe, image, manipulate, or treat biological matter. The inherent mechanical flexibility of OLEDs and their compatibility with a wide range of substrates and geometries are of particular benefit in this context. Here, recent progress in the development and use of OLEDs for biomedical applications is reviewed. The specific requirements that this poses are described and compared to the current state of the art, in particular in terms of the brightness, patterning, stability, and encapsulation of OLEDs. Examples from several main areas are then discussed in some detail: on-chip sensing and integration with microfluidics, wearable devices for optical monitoring, therapeutic devices, and the emerging use in neuroscience for targeted photostimulation via optogenetics. The review closes with a brief outlook on future avenues to scale the manufacturing of OLED-based devices for biomedical use.

Cite

CITATION STYLE

APA

Murawski, C., & Gather, M. C. (2021, July 1). Emerging Biomedical Applications of Organic Light-Emitting Diodes. Advanced Optical Materials. John Wiley and Sons Inc. https://doi.org/10.1002/adom.202100269

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free