In the present study, a novel sulfur/lithium-ion full battery was assembled while using ternary sulfur/polyacrylonitrile/SiO2 (S/PAN/SiO2) composite as the cathode and prelithiated graphite as the anode. For anode, Stabilized Lithium Metal Powder (SLMP) was successfully transformed into lithiated graphite anode. For cathode, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that SiO2 was uniformly distributed on S/PAN composites, where SiO2 served as an effective additive due to its ultra high absorb ability and enhanced ability in trapping soluble polysulfide. The tested half-cell based on S/PAN/SiO2 composite revealed high discharge capacity of 1106 mAh g-1 after 100 cycles at 0.2 C. The full cell based on prelithiated graphite//S/PAN/SiO2 composite system delivered a specific capacity of 810 mAh g-1 over 100 cycles.
CITATION STYLE
He, Y., Shan, Z., Tan, T., Chen, Z., & Zhang, Y. (2018). Ternary sulfur/polyacrylonitrile/sio2 composite cathodes for high-performance sulfur/lithium ion full batteries. Polymers, 10(8). https://doi.org/10.3390/polym10080930
Mendeley helps you to discover research relevant for your work.